Speech Based Computer Games

By Stephen Davison 2/5/2001

Supervised by Steve Renals

This report is submitted in partial fulfilment of the requirement for the degree of Bachelor of Science with Honours in Computer Science by Stephen Davison.

All sentences or passages quoted in this dissertation from other people’s work have been specifically acknowledged by clear cross-referencing to author, work and page(s). Any illustrations which are not the work of the author of this dissertation have been used with the explicit permission of the originator and are specifically acknowledged. I understand that failure to do this amounts to plagiarism and will be considered grounds for failure in this dissertation and the degree examination as a whole.

Name: Stephen Davison

Signature:

Date: 2/5/2001

Abstract:

From investigating what speech is, and what it is commonly used for, it is proved possible to create a game that matches the interface in the case of a speech based computer game where you can command bots using speech. To do this, the multi-modal potential of speech has been realised to overcome problems that existed in various bot command systems of interface conflicts. Bots have been implemented to be asked information and given orders to interact in a certain way with the game world and it’s contents. To create the system, appropriate experiments and design methods are shown to identify potential problems with the interface and with the system which can then be considered during the design process. The project is then discussed and it is shown how improvements may be made to this project.

Acknowledgements:

Many thanks go to the following people:

· Steve Renals, for inspiration, support, feedback, enthusiasm and guidance.

· Steve Maddock, Ian Badcoe and Alan Watt for interest and feedback.

· Simon Marlow, Ben Askew, Graham Matthews, and my Mum for testing and additional feedback.

· Duncan Watson, Andy Clark, Jack Bamford, Rob Kelly, David Meakin, Stephen Vernon, Matt Griffin, Paul Hamer, Andrew Hardy, Carl Atta, Anthony Whiteoak, Kate Roach, and my Dad for enthusiasm, support, and comments.

· Douglas Pride and many other people who have given suggestions and advice.

· Many other thanks go to the people whose work has been referenced in this project. Without such work, this project would have not been possible.

Speech Based Computer Games:

Contents:

Chapter 1: Introduction

1

Chapter 2: Literature review

2

2.1: Interface

2

2.2: Java Speech API

3

2.3: Speech based computer games for Blind People

3

2.4: Modalities

4

2.5: Human Issues

5

2.6: Technology

6

2.7: Bot control systems

8

Chapter 3: Creation of a speech based computer game

12

3.1: Design

12

3.2: The Prototype

13

3.3: The Wizard of Oz experiments

13

3.4: Implementation

15

3.4.1: The speech recogniser

15

3.4.2: Parsing recognised tags

15

3.4.3: Giving the bots information

15

3.4.4: Bot comprehension

16

3.4.5: The current system

16

Chapter 4: Testing

18

4.1: Speech Interface Testing

18

4.2: Grammar Testing Experiment

18

4.3: Bot Humanity Experiment

18

4.4: Interface Mode Change Experiments

19

4.5: Interface Mode Supremacy Experiment

19

4.6: Interface Acceptability Experiment

20

4.7: Results from an Interface Acceptability Experiment

20

Chapter 5: Evaluation and Discussion

22

5.1: Relationships With Other Projects

22

5.2: Possible Improvements to This Project

23

5.3: Advanced projects

25

Chapter 6: Conclusions

26

References:

27

Appendices:

29

Chapter 1: Introduction

Even since old science fiction films such as 2001, there has been the possibility that one day, people will be able talk to computers to get things done. This has now become a reality due to better technology, and it is now possible to use speech in computer games instead of a mouse or a keyboard. This is made difficult because of many different factors. The user might not want to talk to a computer, because it is unusual to talk to inanimate objects. The user may be confused why they would direct a pointer by asking it to move “Up a bit” when it would be easier to move a mouse. There are many additional issues involved with speech based computer games, and these tend to come out mostly when a game is in the process of being designed. Many previous attempts to attach a speech interface to a current game have failed because the game was not suited to the interface. From investigating what speech is, and what it is commonly used for, it is possible to create a game that matches the interface.

Through examining speech in detail, many aspects of speech become apparent. It is possible to speak and do other things at the same time, which proves the multimodal potential of speech. It can be seen that the main use of speech is to get things done. It is simply yet another means at our disposal to interact with the world. To find out information and to give orders. Most of the situations where you would want to do this involve communicating with people. One of the main problems with current first person shooting games is that the computer bots on your side are notoriously difficult to control. Most of the command systems require that the interface which controls the player’s normal actions is used to command. This makes the player unable to use normal actions if he uses any of the commands because they will conflict with normal actions. Because of this, the usual course of action for the player is to ignore the commands available and to attempt to win alone. This is an ineffective system in a team game because the players are being trained to be independent by the ineffective interface.

Since speech is multimodal, it is possible to use speech while playing normally. This allows the potential for the player to command the bots while still playing using different controls. This would solve the problems with the game and give an opportunity for the player to use his team to the best advantage.

In this dissertation, it is shown how speech controlled computer bots may be created and tested with appropriate experiments and design methods. This dissertation also looks at speech based computer games in general and how problems with these games may be solved and why they exist.

In chapter 2, aspects of speech based computer games such as interface, modalities, technologies and human issues are examined. There is also an overview of games for blind people and an examination of the current state of bot technology in computer games. In chapter 3, the creation of speech based computer games is shown in the various stages of design. Chapter 4 looks into the ways in which speech based computer games may be tested and what doing these experiments may prove. Chapter 5 evaluates the project and asks what can be learnt from this dissertation. This chapter also discusses what the next stage in speech based computer games may be with respect to further research and fields of study related to this project. Finally, chapter 6 studies what the dissertation has proved and concludes the project.

Chapter 2: Literature Review

There have been many projects which have revealed many of the potential problems that this project could have met. These range from research projects to commercial games that have been released to the average games player. Such scope is important because although there may not be a problem with the technology during research and testing, there are sometimes problems which occur because the technology is not compatible with the user.

2.1 Interface:

There have been two similar dissertation projects in the past on speech based computer games, and each was based on a different game. In the dissertation that was done two years ago, Steve Lackenby [1] created a pacman style game controlled entirely by speech. This was a large step for speech based computer games because it highlighted the way in which different modalities of input could be used in the wrong way. Speech was proved an unsuccessful modality for the fast reaction speeds that a game such as pacman required. It was shown that there was a large speech processing delay from the time the word was uttered and the time that this was fully processed. This meant that where the aim was to go a certain direction, by the time the words were spoken and processed, the aim had probably changed to something else. In this and fast reaction games, such as Quake 3 Arena [5], a delay in the interface reaction speeds creates lag and this can be mentally disturbing for the player since the response from the system is not the same as what the player thought the system would do.

The pacman game also had another issue in that when the player got excited, the quality of the speech from the player degraded. This meant that the speech recognition did not work as well and that the interface broke down. This caused a vicious circle in that if there was a ghost heading towards the player, the player would get excited which meant the interface would degrade, causing more ghosts to come after the player, causing more excitement until the player lost a life.

One aspect of speech based computer games raised by this scenario is that if the speech interface is used very often, the user gets uncomfortable because it is exhausting to speak constantly for a very long time. Even in conversation, each person who is speaking does not speak constantly and each person is relieved by the other in various places. If there was very little speech in the game at all, is it really needed in the game? There is obviously a balance needed between the amount of speech required in the game and the amount the other modalities are used.

In last year’s dissertation, Mark Wrangham [2] saw the link between speech and natural language text input in text adventure games. This was a good implementation for a speech based computer game, but it had a couple of minor flaws. After testing the system, it was shown that the speech interface was slower than the previous text interface. This was due to a couple of reasons. The speed of the speech interface was slower than a normal speech interface because of the speech processing delay. The speed of the text interface was faster than with a normal person typing because the people who play text adventure games are generally faster at typing because they play text adventure games a lot and have lots of practice. Since these people played the text adventure games a lot, they were more accustomed to using the typing interface than a speech interface, and they felt less comfortable with the new speech interface. The lesson learned from this dissertation was that even though another modality may be used, it may not the best modality for the job.

The paper by Sharon Oviatt [3] explains that one of the main advantages of using multimodal systems is that the strengths and weaknesses of the interfaces may be capitalised on with one interface making up for any weaknesses in the other. This is an interesting idea for speech based computer games because it means that where previously high reaction games were not suited for the speech interface, now they could be if there was another interface that can handle the high reaction part of the game. This could lead to a game that uses a usual interface for that type of game and has a less time critical additional feature controlled by speech.

2.2 Java Speech API:

The Java Speech API (JSAPI) programmers guide [4] is one of the most useful tools for creating applications with speech input. It includes information about where speech is useful in speech based applications and how to implement the system. It is shown how feedback is one of the most important aspects of speech applications because the user needs to know what is happening. This is because the usual reaction of a system to something it does not understand is to do nothing. The system needs to give pointers as to how it understood what the user has said. This would lead to the system saying phrases such as “I don’t understand” and phrases that sound similar may be reported on in a way that shows the user some level of understanding. For the slightly similar phrases “where are you?” and “who are you?” the response would show that the phrase was understood, but for “washing” and “watching” the words may be repeated back to the user as the task is undertaken. For potentially dangerous situations there could be a little delay intended for the user to change their mind. This would be appropriate if the item you were about to tell someone to “watch” or “wash” was an electrical appliance.

There is a point that should have been given a little more attention in the JSAPI, and this is that the most successful speech applications are those which use the speech interface to add a dimension to the application which was not in the original. This is true of all interfaces and it should be made clear that if the interface is not useful and does not add anything to the interface that is helpful, then that interface should be dropped. One such applications could be a speech clock that you can ask the time of using a speech interface, and the program will then use the synthesiser to reply the time even when the clock is displayed full screen with a bright neon display.

2.3 Speech based computer games for Blind people:

Using the previous example of the speech operated clock, this would be useful for blind (or partially sighted) people, even though sighted people might not appreciate the idea fully. A conversational input with speech would be useful for blind people, and could be an interesting field for more research. One potential aspect being that there could be additional visual information encoded in images so that the computer could be asked what it sees. “There is an apple” could be a reply. When quizzed further the added information could be as poetic and as descriptive as desired by the user. This could be broken up into aspects of the picture so if the user was interested enough, the user could probe the image with questions and such. This could be almost implemented in a tag stack with the object creating a list, and each successive question could expand the list of description tags further and further. From such awkward visual information as “The apple is mottled red and yellow” questions could be asked about the other aspects of the apple, and more questions could be asked about the colour giving opportunities to ask how the colour makes people feel and what it reminds them of. Certain tags could be linked to the system dictionary database. The descriptions would have to be written by teams of people who have experienced those things but cannot any more and people who were born blind so that they would be in a position to discuss what the descriptions should be. The descriptions would then have to be tested on a different blind person every time until the description was perfect. This would be so that the conversation between the designers was not required to understand the information. Such an operating system would need to act like a person, and the response from any system commands would need to be different to the voice used for dictated text.

With the prospect of speech based computer games, various new games for blind people will be able to be created. Currently, computer games for blind people are available on the Internet, but the sites for these games and the gamers change quite often. Such games that exist use audio in a variety of ways. A boxing game makes different noises when punches are heading towards different parts of the body. Another game uses sound to warn of obstacles in a racing game. Some games that were not designed for blind people are compatible with a system which uses a synthesiser to convert the text to speech, and some games that are not particularly text based are able to be converted using an emulation utility. Some games that are point and click adventure games only use the mouse interface to generate the sentence which is then put through a text parser. Monkey Island [15] and Space Quest [16] are examples of these. The graphics are references to images and these images can be converted to names and then written on the screen.

Using the description system above, more interesting games could be created. It would be easy to imagine a game based on an interactive detective game. Detective stories such as what was on the radio before television. The player would play the detective, and would have to talk to everyone and piece together evidence to solve cases. In case the player forgot any of the information, there could be a sidekick to remember it who could be asked at any time. There could also be a narrator who explains what is going on as it happens, and an atmospheric partially scripted score. This would allow for similar effects like gunshots used in the original shows. The player would be able to order a taxi to visit people around the city, and the voices could be made stereotypical so it is possible to distinguish between the character traits. This game could be advanced enough to change the plot many times, as in Blade Runner [17], and many stories could be produced easily. If the voices of the actors were all synthesised perfectly, the size of the game, and the ease of modification (only creating a text script instead of real recorded audio) would be more efficient.

2.4 Modalities:

New modalities have been introduced into computer games over many years. In the game pong, the method used to control the bat was a dial that was turned to move the character. This has advanced into such modalities as joystick and mouse interfaces. It is not only the external interface that matters in current games. Some games use sub-interfaces where different aspects in game are controlled in different ways. Many games have different methods for controlling different types of action in the games. Final Fantasy 7 [18] is a good example of this as almost every sub game has a different method of control. Some games even go further than having sub games and incorporate the same interface in the entire game. In Zelda 64 [7], there is an instrument called an ocarina that the player can play to perform some spells. These spells are needed to advance through the game, and the opportunity is given for them to be learned. The instrument plays different notes when different buttons are pressed on the control pad as soon as ocarina play mode is activated. If the interface used to activate spells were speech, then a play mode would not have to be activated but there could be a possible conflict between the spells being incanted and any other use that the speech interface had. For this to be added to a role-playing game the spells could be made so you had to speak the incantation for a spell before you could use it. Newer versions of the spells could be made more complex, but the complexity would be made worthwhile because the effects of such a spell would be far greater.

2.5 Human issues:

In current computer games the most successful games tend to be the ones which are most immersive. These games extend the playing experience and allow interaction on many levels. In Half-Life [9] there are many different levels of interaction. The first level of interaction is physical. The player is given the opportunity to move around realistically even in environments such as water. The second level of interaction involves objects. The objects may be moved, used, and sometimes broken. The third level of interaction involves the characters. The characters may succumb to the same hazards as the player and they may be ordered around to help. The fourth level of interaction is response. The characters are given the ability to react back to the player. This includes feedback when the player has ordered the character in both speech and motion. The characters are also scripted to react to each other and some objects in some places. The characters also act to give the player information about the state of the plot in the game. All of these levels of interaction expand the game and involve the player more in the game world. They also convince the character that the world is more real than they might otherwise think. The key to this interaction involves careful scripting and creating advanced AI in the bots. In this game, the most impressive bots are the Special Forces characters. They have behaviours such as clustering, surrounding, retreating, and running away from grenades. They use speech to maximum effect and this can be seen best when they shout, “Fire in the hold!” when you throw a grenade at a group of them. They also have other phrases such as “Go! Go! Go!” and “I hear something!”. Such phrases add depth to the game because they make the player more scared than if a couple of bots charged in without the speech. The use of lip-synching in the game extends the realism of the game, and the characters face you when they speak. To add speech control to this game would be a good idea because the environment of the game supports speech control since the bots already talk back to you and allow interaction on the basis of using them by pressing a single key. It is also a simpler environment to talk to because of the ways in which the characters talk to you.

One of the greatest problems in speech-based applications is based on the people, not the technology. Although people are generally happy to speak to one another, when speaking to a machine these people tend to feel very uncomfortable. The reason for this is that usually when you are speaking to someone you are constantly expecting a response, whether this is verbal or physical. It is very disconcerting for a person to speak to someone if they are staring something and have no response at all. A game such as Half-Life might ease this feeling by having something to talk to and humanizing it with such techniques as lip synching and having the characters turn their heads towards the player when they speak. Having a response goes some way to ease this feeling but it requires that the computer must make the first move to prove that it will respond. One factor of this problem is due to the quality of the speech used in the response. In modern games this is currently sampled beforehand but takes up a lot of space and cannot be changed very easily. Synthesised speech seems a solution to this but usually results in an artificial response with very little emotion. With ViaVoice [6] the emotion can either be bored or confused. In The JSAPI Programmers Guide [4] it is explained how there is a trade-off between speech which is easily recognisable but artificial and speech that sounds human but might not be very understandable. The speech produced sounds similar to the voice over on the Radiohead song “Fitter, Happier” [19], and is artificial. Although using synthesised speech might have an adverse reaction in game, it is suitable for low budget testing. At the end of testing, the synthesised speech sentences could be replaced by audio samples that add to the theme of the game.

In Half-life [9], the manner in which the characters talk back to the player is implemented by having a group of samples for each type of response. The more samples that are in these groups, the more realistic the response will seem. This doesn’t just mean that there must be numerous samples that mean the same thing. It also means that there could be a lot of samples which say the same thing but are said in a slightly different way. When people speak, there are a number of different factors which alter the way the speech is produced. This means that speech is rarely repeated exactly the same every time. Even two phrases spoken in the same conditions can have different fluctuations. Because of the attributes of speech, the audio quality may be set almost as low as telephone quality. This would make it possible to store lots of samples. When recording these samples even the previous takes of recording a sample correctly may be used to advance the effect. In Half-Life, the main shortcoming of the speech response system was that all of a certain class of people used the same samples. This was disconcerting because in some cases the samples were created by different actors. The characters of the classes also had different faces, which gives all of the characters a minor personality crisis.

2.6 Technology:

In speech based computer games technology plays a large role and there are a lot of features that have been created to deal with certain problems. Some problems have not yet been fixed in the field of speech based computer games, however. For example, although the grammar in a game might be quite small and the set of words that it is possible for the game to understand might be quite small, training ViaVoice [6] for each separate user can take about half an hour for each user. For a user of a game to invest such a large amount of time training a recogniser to recognise words that the user will probably not be using is unfair. The training of the data is specifically centred on a much larger set of words and this means that there is a lot of redundancy. The game “Hey you Pikachu!” [10] manages to avoid training altogether. Using a voice recognition unit between the controller port and the microphone, there are a couple of ways in which this requires less computation. The first is that it is designed for children, and children tend to have similar voice patterns before they mature. The second is that the set of possible words is very low. In the Japanese version of the game “Pikachu genki dechu” it was made easier to create because the Japanese language uses fewer phonemes than English. This gave the creators a head start in creating a speech based computer game because of the reduced complexity. This may have helped the design of the English version if the English words were broken down into Japanese phonemes such as Pi-Ka-Chu. One way to deal with the recognition is to give it to the user slowly. This would be a type of training level where each part of the control would slowly build up. In this way the speech recogniser learns at the same pace at which the user is learning what to say.

Another aspect of speech based computer games is that there is a large amount of processing power required to recognise speech. Although processing power is increasing rapidly, there is still a significant resource drain. When 3D computer games were getting more complex, companies such as 3dfx created hardware 3d accelerators so the processor could be used for other things. Speech recognition cards could be created to recognise phonemes from speech and then process this into relevant text output. These would help performance issues and they would have the advantage of being interchangeable since the input and the output would remain the same.

One important issue with speech based computer games is that the user will be expecting full surround sound with a large subwoofer, but will also be expecting the recogniser to process speech in the same noisy conditions. This is a problem for the microphones, and although noise-cancelling microphones work, they need improvement. At the moment, noise-cancelling microphones have two microphones, one facing towards the mouth and one facing away from the mouth. The signal facing away from the mouth is assumed to be background noise, and is removed from the signal facing towards the mouth. This is done before the signal goes into the computer. If there were anomalies introduced into the signal at a pitch that only the computer could hear, the computer could have a backlog of produced audio signal and it would know exactly what part of the backlog interferes with the incoming speech. The exact same parts of the signal could then be removed. Another possibility would be for the computer to produce sound that has gaps in it. These gaps would not be audible to the user but the computer would be able to remove the parts of the speech signal that was destroyed with its sound and only use the rest of the signal to process the speech.

The JSAPI [4] supports multiple grammars. This would be useful in an adventure game where the player goes into shops and fights battles, but not at the same time. There could be a shop grammar and a fight grammar, and the smaller separate grammars could reduce the speech processing delay. Unfortunately, changing grammars requires restarting the speech recogniser, which can sometimes take a long time. It would be nice if all of the grammars could be loaded when the recogniser engine was created and then switched swiftly.

Although I will be using a grammar system for my speech recogniser there are alternate modes available. There is a dictation mode which is able to convert what you are saying into text. This is the standard method of speech recognition. The power of this method can be increased by using speech grammars. These constrict the possible speech to a certain form and make it easier for the recogniser to decide what was said. Anything that is not recognised by the grammar is rejected as a result.

Some of the programs that are designed to pass the Turing test [20] are based on statistical key word detection. For example, a sentence with the word “football” in it might result in the system response of “I like football but I don’t watch it.”. Such a system could be effective in speech based computer games to increase the amount of things that the user can say to the system. If this idea was used to enhance the dictation mode, it would be possible for the computer to realise that the player had said the word “Help” and would make the computer wonder who to help and then search words to see who was mentioned. This is a powerful idea but can be made to break down very easily unless the system was able to understand negatives such as “Don’t help that player.”.

Another direction that speech based computer games can take is to have conversations between the player and the characters in the game. A game called seaman allows you to do this. The vocabulary for this game is quite complex but it is all processed in a statistical key word detection manner. The different responses to questions asked by the character result in different scripted responses by the character. The entire game is scripted in this way with every conversation having a different result. Some information is stored by the game for later such as when your birthday is. Most of the conversations start with questions such as ‘have you?’, ‘did you?’, ‘do you?’ which mostly have yes or no replies. Some of the questions in mid conversation have other possible replies which are mostly all expected by the vocabulary.

2.7 Bot control systems:

There are many reasons why this project is based on controlling bots via a speech interface. These range from the current state of bot control to be inefficient through to examples where bot control via speech is a realistic idea.

In Quake 3 Arena [5], the bots have the power to do their job quite well. Unfortunately, this power is not effectively controlled and so the idea fails. There are two different interfaces that may be used but each uses part of the usual interface of the game. The menu system may use the mouse or the keyboard. The menu is two layer which means that it does not take very long to select the commands but the fluidity of the game is compromised since the game pauses while selecting commands. The bots have a tendency to forget what you had just ordered them to do and go and do something completely different. This is frustrating for the user because it means the system does not have an expected output and it also means that the bots are not controlled. There are about 8 commands that it is possible to use, and the commands are lacking in power. There was one time where the bot was ordered to take up a camping position next to the rail gun so the bot could snipe people. Unfortunately, the bot stood about 2 feet away from the rail gun and used a machine gun instead. There were also times were the bots needed health or the quad damage but this command system was not powerful enough to order them to get those things or even to run away.

The other interface that may be used is a natural language command line interface which uses the keyboard. While commanding in this mode, the player is in a chat mode and can not defend themselves. There are a large amount of commands that may be used in this mode which may involve interacting with other players and various objects in the arena. There are also various roles the bot may be asked to perform such as camping, patrolling, roaming, and covering. All the possible objects may also be used as positional references such as “<botname> patrol from <loc/obj> to <loc/obj>”.

This natural language interface is a similar type of interface to which will be used in this project. The aim is that this project will use speech so the player can carry on playing and avoiding threats while ordering bots around.

In Kingpin [8], the control of the bots allowed you to put your bot in roaming mode, bodyguard mode and standby mode. The bot had a tendency to run into a group of enemies and get itself killed, which usually got you killed as well since the enemies would all run out together. There were also instances were the bots would get in the way of the door you needed to go through and would not leave so you had to kill it. There was also a simple conversation mode that allowed you to talk to other characters depending on whether you wanted a positive conversation or a negative conversation and some characters would also get angry if you had your gun out. This was one of the factors which made the characters turn on your bot and then they would then turn on you. The player has a voice implemented which is unusual in some games since it is usually best that the player does not know what voice they have to make the player feel like they are playing, rather than that they are controlling someone else that is playing the game. The amount of phrases that this voice can say is quite low so it would be easy for this to be implemented in a speech input interface. The style of speech involved a lot of swearing, so this might confuse the recogniser and the player. If the speech interface was implemented in a statistical key word manner rather than a grammar form, this could be implemented such that swearwords indicate a negative conversation and words such as “information” and “what’s happening?” indicate a more constructive positive conversation. The sum of negative and constructive words could influence the emotion of the characters and change the type of game entirely.

The main justification for having bots controlled by speech in computer games is the game “Hey, you, Pikachu!” [10]. In this game, the user is able to talk to Pikachu in a variety of ways to get things done. The game gives the impression that Pikachu is your pet. This game has been released in both Japan and America so it proves that speech based computer games are a marketable product as long as the game comes with the voice recognition capabilities needed. If the user had to buy an expensive version of ViaVoice or Dragon Naturally Speaking to play a single game, the price of the game would be far too expensive and the user would purchase a cheaper game. Releasing speech based computer games would only work if there were a large enough selection of speech based computer games. If these games came with basic speech recognition software and there was the opportunity to upgrade the capabilities with a commercial speech recognition package then the games might have more commercial success.

This game was designed in mind for children and this can be seen in a variety of ways. The first is that the grammar is taught to the player gradually and the game has a gradual learning curve. The second is that the game is broken down into many sections so there is a place to pause every so often which is useful because children can sometimes have short attentions spans. The third is that there is a constant reminder about the words you can say in information that pops up sometimes such as “Pikachu has a Strawberry. You can ask him ‘how’s it taste?’.”. Possibly the most interesting part of Pikachu’s behaviour is the emotions that Pikachu seems to possess. For example, if the player tells Pikachu “Your so cute!” Pikachu will blush and smile. If Pikachu wants to show the player something he points to it, and if the player does not interact with Pikachu then he falls asleep.

The game uses the speech interface to do a variety of things in many sub-games. In one the player has to encourage Pikachu to catch a fish and in another the player has to get ingredients for some soup. The game requires that the speech interface is used in the game to complete it but it is more of a pet simulator than a game that can be completed. The game also has quite a realistic world in which to interact with Pikachu. This results in the player feeling that having a two-foot tall yellow mouse that can electrocute things is normal.

The game’s flaws are all based on the speech interface. A lot of the time Pikachu does not understand what you say or does not understand the wording, and in some of the games this can be a setback. For example, in the ingredients game you tell Pikachu what he needs from a notebook with pictures in. He will then run and pick up a vegetable. If you want Pikachu to send the ingredient then you say “sure”. Saying yes tends to make him eat the object rather than sending it. Sometimes the speech recogniser fails and he drops the vegetable you need to send and runs off. When this happens it can be frustrating for the player and the reaction is to use another interface rather than the speech interface. The player then attempts to find the ingredient needed and give it to Pikachu personally. This is a breakdown of the interface and a problem because the player is more reluctant to interact with Pikachu. This may have been because the player used to test the game was older than what the voice recognition unit required but the feeling that Pikachu understands you is the best emotion felt while playing and is possibly the most important in this kind of game to get right. The reason why it is such a good feeling is because it bridges the gap between the fantasy game world and the real world. The fact that such a character can understand you by itself is almost too incredible to understand because it is pure science fiction.

Apart from the Pikachu game, the next closest project to this dissertation is “’Situated AI’ in Video Games: Integrating NLP, Path Planning and 3D Animation” [12]. This project focuses on controlling an avatar in a computer game via speech. To do this, many different techniques needed to be developed to support the speech interface such as path planning. The environment that this project uses is an emulated DOOM environment. This allows the language to be descriptive since the objects in the doom environment may be interacted with and used in many ways.

The fact that the world is semi 3D is proved not to differ from 2D because the avatar always walks on the surface. This is an interesting result because it means that bots developed for a 2D world may be easily converted to bots suited for a 3D world where they walk on the surface. Any additional programming would be related to the change of the targeting system to target an enemy vertically as well as the normal method of targeting.

The method in which this project gathers the grammar that may be spoken in the game is interesting but may have some flaws. In speech based computer games the game is required to expect what will be said and then process how this will be dealt with. What the game expects the player to say may be broken down into a grammar to aid processing for the speech recogniser. To create an accurate grammar from scratch is a difficult process but this project uses DOOM spoilers to get the sample grammar. The DOOM spoilers are designed to guide a player through the game using such descriptive commands as “Kill the cyberdemon with the chaingun.”. The potential flaw in doing this is based on the fact that people treat people and machines differently so the grammar may be ineffective for a player to control a machine. The ambiguity is also different because when you talk to a person, it is expected that the person knows the ambiguities of the language. When you talk to a machine you are constantly probing it to find out just how much ambiguity it understands. This is a similar concept as if you were to speak to a foreign person since you would not know just how adept this person was at your language. It might be the case that this is an attitude based on feedback from who or what was being talked to. The language that people use when talking to machines and people is also different because it is made clear that when talking to a machine you order it to do things in a superior manner whereas when talking to a person it is considered rude to do this.

The method in which the player can interact with the avatar is only on one level and the player is not able to support the avatar. This is not the aim of this dissertation at all since this dissertation is based on controlling bots using a speech interface and allowing the player to do this at the same time as doing other things in a multimodal manner. This project differs from this dissertation in that the avatar is not your teammate designed to help you; it is your only means of interacting with the world. In this dissertation the bots can do their own thing but can also be ordered to do other things so they are not totally reliant on the player. In the game in this dissertation the player will need to use the bots effectively to make the game easier.

In the game that will be designed in this dissertation the language will be much different since the bot plays the game as well as the person. This would result in not telling the bots specifically how to play the game, but in telling them to play the game in a different manner. Such commands would include asking the bot for help and asking the bot for support in various ways with certain challenges. This is a different level of complexity of commands. The commands depend on each other in a structured fashion with the basic commands such as “go forward” acting like the building blocks of other commands. In the project the commands infer few things related to the command but in the game created in this dissertation, many things are inferred such as what needs to happen before the orders are carried out.

This project deals with the various techniques involved with path planning more in depth than in this dissertation. This is because this dissertation is focussed mainly on the creation of speech based computer games while the project focuses more on issues related to situated AI.

Chapter 3: Creation of a Speech based Computer Game

The creation of speech based computer games requires 4 stages, which are design, prototyping, grammar retrieval, implementation and testing. These are applied in a project lifecycle that will be shown to be suited to the creation of speech based computer games.

3.1 Design:

The design of a speech based computer game requires that the game being designed is specifically suited for speech. Technological and human issues need to be considered thoroughly since the game needs to be feasible and needs to be suited to the players. There are three different types of speech interface that may be used and the benefits and drawbacks may be summed up in table 1:

Interface
Benefits
Drawbacks
What it may be used for.

Grammar based Speech input.
May be parsed in a series of tags. This allows the important parts of the sentence to be filtered out.

Can improve recognition accuracy.
All possibilities of the commands may have to be allowed for, creating a complex grammar.

Grammar creation is difficult.
Command based system where the commands are known.

Dictation style speech input.
Converts natural language to text.

Allows words not expected to be dealt with in a more user-friendly manner.
Natural text is more difficult to parse than tag text.

Dictation accuracy might fail in mid sentence causing entire sentence to be miss-parsed.
Could be used where existing method of parsing natural language exists.

Natural language conversations between characters.

Dictation style speech input parsed with key word recognition as in a program attempting to pass the Turing test.
Is able to respond to most sentences.

Gives an impression that the program knows more than it does.
Might respond incorrectly to some sentences.

Needs to understand negatives such as “Don’t attack me.”.
An interface to a character that may respond and hold a conversation with the player.

Table 1. Benefits and Drawbacks of different Speech Interfaces.

For this project, the manner of speech input which made the most sense was the grammar based input to allow bots to be given accurate orders. With the intention of finding if speech control would help in team games, a team game needed to be created. A simple game of team deathmatch in a 2D arena was a good choice because it requires that players act co-operatively to score points. This game was created in a prototype form to discover the grammar for the game.

3.2 The Prototype:

The prototype was made in such a way to discover if the environmental changes would show in the grammar. Walls were added to give some cover and they were given different colours in an experiment to find out whether the players would use the colour as a positional reference. The bots were made to roam around and were given different letters to distinguish each bot and act like another reference. In order to add more interaction than simply running around in a 2D arena, it was made possible to shoot the other bots. At this stage the bots were not given the capabilities to fight back, which may have been a mistake since certain commands related to dodging and running away were not fully examined.

3.3 The Wizard of Oz Experiments:

In order to discover the grammar for the game, it was possible to use an experiment known as a Wizard of Oz experiment. In “The Wonderful Wizard of Oz” [21], it was seen that there was no real wizard, only an ordinary man sitting behind the screen pressing switches. In a Wizard of Oz experiment [13], the user of the system is given the impression that an amazing interface is working, where in fact there is an ordinary person sitting behind the curtain pulling switches giving the illusion that the interface is amazing and working perfectly. These experiments show what the game would be like for the player if the game was accurately implemented. In this environment, the user will act like the interface exists so it can be used to find out what types of grammar need to be implemented to support the user when the game is fully implemented.

[image: image1.png]THE J0VPAD.

THEUSER

THE WIZARD.

DIALOGUE
RECORDING
DEVICE

HovEN Wik

N

Figure 1: A Diagram of the Wizard of Oz Experiment.

In figure 1, it is possible to see how the user was given the impression that the interface was perfect. If the user could see the joypad, the user would have realised what was happening and would have changed their grammar. The fictitious interface would break down and the user would have a different attitude. To have some basis of interaction, the player was given movement controls and a fake bot on the player’s team was created for the player to command, but in reality this was controlled by a joystick interface created by Satoshi Konno [14]. This joystick was hidden from the player so the player could be lead to the conclusion that the character on his side was real. Using the IBM Java Speech API implementation [4], a response system for the fictitious bot was created using the speech synthesiser. This was controlled by the joystick and was made more interesting by the fact that there were four different responses for each of the three categories of response. These categories were a positive response, a negative response, and a confused response. The player was told the controls and told to tell the fake player to do things. The player was given a trial run to practice the system and then the next test was recorded with both the speech input and output together. To get a picture of the possible users, tests were run using players that were adept at using computers and those which were only passive users.

The dialogues that were recorded were then analysed to find common constructs and redundancies in the speech. These led to the creation of the first grammar. This grammar was then examined for ambiguities and manually changed accordingly. Through examining the dialogues it became clear that the users would create their own grammar naturally, with the successes and the failures of what happened in the game world deciding whether the user used the grammar construct. Other shortcomings in the grammar such as the possibility of having players run or walk could be identified. In this way it can be seen that a project lifecycle of creating successive prototypes and using a Wizard of Oz experiment to find where the prototype may be advanced will allow the game to develop in a controlled manner. This will result in a set prototype for the game to follow and a set grammar to be implemented.

The grammar is not the only part of the experiment that yields information since when asked about the experiment and what the user thought of the game, the user claimed that his assistant did not respond to ‘Player at 2 o’clock’ as it should have done. This was because even for the human wizard, this phrase is quite ambiguous and confusing.

Such various meanings could have been:

· Look at the player at your 2 o’clock.

· Look at the player at my 2 o’clock.

· Kill the player at 2 o’clock.

· Run away from the player at 2 o’clock.

The user’s intent was to kill the player which was at 2 o’clock, but if there were more players it could have also meant “Help is arriving in the form of the Player at 2 o’clock”. This kind of confusion could be bad because the reaction implemented could have been to kill that player, which may not always be the desired effect.

There were also instances where the user would get annoyed because the wizard was not perfect and would perform certain commands differently. Overall, it was the response system that annoyed the users the most because some user commands were performed and no feedback was given to tell the user what the assistant was doing. Without feedback the user loses the feeling of being in control and this causes the users enjoyment of the game to fall rapidly. This would escalate because the anger makes the user stress words in ways that the speech interface couldn’t understand which would then make the user angrier.

From the dialogue from the first test, it is interesting to note all of the sounds of non-speech such as laughs, sighs, and clicks of disapproval. These noises can cause problems with a dictation recogniser, one such example is that if you laugh into the microphone while using ViaVoice, nonsensical sentences are produced such as ‘No in the no vote no hope Norway in the 86’. Another example is that sighs have a tendency to be recognised as the word ‘bye’.

3.4 Implementation:

When the cycle of prototype and grammar creation is finalised, the speech grammar needed to be implemented. This involves creating a recogniser to understand the grammar, parsing the list of tags returned, sending the appropriate information to the bots, and then making the bots so they do what they have been told to.

3.4.1 The speech recogniser:

The Java Speech API allows you to create a recogniser based on a grammar that will run a resultAccepted() event when a result is accepted. This gives an event in a similar way to a mouseClicked() event. This event has the information regarding the last accepted phrase spoken that exists in the grammar. This may be returned as text, or it may be returned in recognised tag form. The tags are applied to key words such as “chase” and “kill” in the grammar and are returned in a sentence of tags. In the game grammar, such an example would be “player 2 find player 1”. In a tag phrase, this is perceived as “2 orderedto locate 1”. The purpose of converting into tag form is to remove redundant speech from the phrase to make the phrase more easily parsable. Similar words may also be given the same tag. For the chasing example, this may be described in the grammar as:

(hunt | locate | chase | find) {locate};

This means that all of the words on the left may be used interchangeably in the grammar to give the tag result of ‘locate’. The Java Speech Grammar Format is used to write the grammar. When the recogniser is given the grammar, it processes all eventualities that may be accepted by that grammar. An input that is similar to some of these possibilities means that the possibilities are compared and given a confidence score by the recogniser. If this score is too low, the recogniser will not accept the result. There is a method given in the Java Speech API to change the cut-off for the confidence but having the cut off set too low might result in phrases that are not allowed by the grammar to be recognised. With the cut-off set too high, the risk is that the recogniser does not have the confidence to claim that anything is recognised.

3.4.2 Parsing recognised tags:

Parsing of the recognised tags is made possible by finding the main key words such as verbs. Once the verbs are discovered, the objects related to those words can be found. For example for the phrase “2 orderedto locate 1”, checking the second tag in the phase and the last for the occurrence of ‘orderedto’ will find out if anyone has been ordered to do this command. If so, the information about who is ordered may be taken off to allow parsing of the rest of the tag sequence. Further processing is required to discover that ‘locate’ is the key word in “locate 1”. From knowing that it is a ‘locate’ verb, there is now a question of what is being located which allows the discovery that player 1 is to be located. The bot ‘2’ now needs to be informed that has to ‘locate’ and its target is ‘1’.

Such parsing of the tag sequence is a structure of if statements that consider what the first or the second tag in the sequence is.

3.4.3 Giving the bots information:

The manner in which this information is given to the bots is by a couple of variables. The bot is told what its current mission is in the form of a string and it is told who its target is. This is sufficient to deal with a small amount of commands since the bot does not have to consider any complex commands that involve more than one player. Any other information needed for the bot to complete its mission is in the game world, and the bot has access to that information.

3.4.4 Bot comprehension:

Most of the commands in the game are based on going somewhere to do something. Because of this, the AI needs to include how to get to a specific place and how to do the things you are supposed to when you get there. To get to where they need to be the bots have been programmed so that they go forward until they hit something and then they turn round a random amount until they can move again. As soon as the bots can see the target, they turn until the target is in front of them and then move forward.

The current mission string which gives the bots information about what they are supposed to do can be used by the bot to switch it’s own behaviour. This allows certain missions to end themselves under certain conditions. For example, in the “come” mission, when the bot is a certain distance away from the player, the bot ends its current mission. Acceptance of missions has been added by changing the state of the mission internally. The acceptance state is a state which the speech recogniser forces the bot into. This state activates the speech synthesiser to give the player information about the acceptance. The state is then changed again into an active state that may complete under certain conditions or may be changed in mid mission.

3.4.5 The current system:

The current player controlled bots are capable of performing the following orders which may be summarised in table 2, however, all the orders must be directed at a bot for it to work.

Questions:
What this does:

What are you doing?

Where are you going?

Who are you chasing?

Where are you?

How are you?

How much health do you have?

What is the score?
Replies what the bot is doing.

Replies where the bot is going.

Replies who the target of the bot is.

Replies where the bot is.

Replies how the bot is informally.

Replies how much health .

Replies what the score is.

Orders:

locate player x

avoid player x

attack player x

help player x

go to x wall

come here

patrol

stop

continue
Bot finds player x.

Bot avoids player x.

Bot finds and attacks player x.

Bot finds player x.

Bot Heads towards the centre of the wall.

Bot finds player x.

Bot wanders around.

Bot stops what it is doing.

Bot continues what it was previously doing.

Table 2. Possible bot orders.

The questions make it possible to allow the player to ask the bot various things. This increases the possible interaction between the player and the bot and creates a type of relationship between the two. The way in which the questions have been implemented is that they temporarily change the mission and then change it back again. This gives the illusion that the mission continues as normal. One flaw in the system is that if a bot is related to the stop and continue feature. It is possible for a bot to be commanded to do something, then commanded to stop, then asked a question which clears the previous mission buffer, and so if the bot was then ordered to continue it would not know what mission to continue.

The bots have been given a system to vary the responses to the orders it has received. This avoids too much repetition of each reply which would soon bore the user. The other manner in which the responses may be designed is that they might include some feedback as to what the user actually said. There is a trade off between the amount of varied responses and the feedback that these responses may return. It was simpler for the system to ignore the feedback related to the order because this will become apparent by the action which the bot takes in most cases. As a backup, it is also possible to ask the players what they are doing and who their target is if the player is unsure if the command was understood properly.

The bots has been given their own instincts which tell them to attempt to kill an enemy if it threatens them by moving too close. This allows the bots on the player’s team to act sensibly. The player does not want the bots to go off and kill the first player they see because this would mean the bots were virtually uncontrollable. The threat system means that the bots will be well behaved, but they will be able to make their own decisions under pressure. The threat system could be changed to be activated when the player was not as close to the enemy or only when the bot was fired upon.

The enemy bots are designed to wander around and to kill the closest player of the opposite team if one can be seen. Giving these bots a command that would work on the other bots results in the response “I don’t take orders from you!”. These bots are designed to avoid the closest player of the opposite team when they are low on health but this behaviour is rarely used since most hostile encounters between bots results in one of the bots being killed.

The search algorithm that all the bots have is quite simple. If the bots can see the target, the bots turn to face the target. If the target is directly in front of the bot, the bot moves forward. One problem with this algorithm becomes apparent when the bot sees the target when going round a corner. The reaction of the bot is to head straight towards the target but this involves getting caught on the corner. As soon as the bot is not caught, it can see the target so it attempts to move forward but ends up getting caught on the wall again. A solution to this problem would be to create a method to tell if the bot can move towards the target successfully and using this as the condition to start homing in on the target instead.

The method of turning to face the target before moving towards it is also quite artificial. A more natural method would involve moving forward while changing course while the bot was on the way to the target as in human behaviour. However, this is better than the keyboard control that the users have access to. With the current keyboard interface, only one key may be pressed at a time. The bots should use the original method since it is more like the restricted movement capabilities of the player.

Chapter 4: Testing

Testing may be carried out using a variety of experiments to find out different information about the system. Some experiments may be performed to examine if the speech interface is effective and intuitive, while other experiments may be performed to examine if the speech interface is the best interface to use in that situation.

4.1 Speech interface testing:

To test the speech interface, it is possible to perform an experiment to find; efficiency, amount of bot orders and the duration spent giving orders. The efficiency is the ratio of points between the players’ team and the enemy team. This will give an indication of how useful the interface is to the user. The amount of bot orders will show how much the player wants to use the interface and will be an indication of satisfaction with the interface. If the player likes the interface more it will be used more. The duration spent giving orders will show how difficult the interface is to use when compared with the amount of bot orders. If the amount of bot orders is low and the time spent giving orders is high, the reason will be because the interface is hard to use. The experiment could be performed over a set time with users who had a similar knowledge of the system.

4.2 Grammar testing experiment:

The grammar may be tested to see if it is intuitive by another type of Wizard of Oz experiment. Since the users that performed the Wizard of Oz experiments used similar grammar without prior knowledge of the system, the grammar should be the same as the grammar used by a user new to the system. To find out if this is the case, another set Wizard of Oz experiments performed with the speech interface in place should show the effectiveness of the grammar. The setup would be the same as in the previous Wizard of Oz experiment except the wizard would be replaced by the bot and the speech interface. The dialogue would then be examined to find the effectiveness of the grammar.

In the previous Wizard of Oz experiment, there was a response to tell the user that the artificial bot did not understand. In the game this feature does not exist and in its place there is only silence. This should have a negative effect on the user and this would show in the dialogue.

4.3 Bot humanity experiment:

The humanity of the bot has a large effect on whether the player accepts the bot and wants to talk to it. These are the properties that make the player think that the bot is like the player such as response times, movement style, style of task completion, and ability of basic problem solving. To find out if the bot is human enough for the player, an experiment similar to the Turing Test [20] may be performed. In the Turing Test, the aim is for the computer program to fool people into thinking it is human. A similar experiment could be performed using the joystick interface designed for the Wizard of Oz experiments. The aim of the experiment would then be to see if the player could tell which times a human player was used and which times a bot player was used. There could even be experiments where the player determines which was the artificial human bot out of a group of bots that were being controlled. The percentage of times the player was guessed incorrectly could stand as the confidence rating of humanity for the bot. There is a decision to be made of whether to run the tests on different people or not. If the same person was used over and over again, this person may become experienced at spotting the factors that can give the bot away.

4.4 Interface mode change experiments:

Interface mode change experiments can be performed to prove the worth of the speech interface and to compare it with other methods of controlling bots in team games. The interface mode change experiment involves replacing the speech interface with another method of controlling bots in the game and performing a similar experiment used in the speech interface testing experiment. The methods that will be compared are the speech interface, a switchboard interface where every key is a command, and a menu selection interface as in Quake 3 Arena [5]. The switchboard interface will have a separate key for every command, and another two keys to alternate the commanded player and the target object / player. The menu selection interface will need to be controlled with the keyboard instead of the mouse so it can be seen how having the bot control in the same mode as other controls effects the bot control interface.

There will be two sets of experiments carried out. There will be one set where the game continues as you attempt to find the command, and there will be another set that pauses the game so you can select the command. This will allow comparisons of the success of the two styles of selecting orders. Ideally, these experiments would show that speech is a much better interface for selecting commands in real time, but when pausing to use the interface other methods will be better. For team deathmatch with a single player, it is possible to pause the game every time new orders need to be given. If two players were combating each other with a different set of bots each, the other player pausing the game at random intervals would annoy the user. The action needs to be thick and fast and play should ideally be uninterrupted in such a game.

The users that this experiment will be performed with have a brief tutorial on how to use each interface; this will make each interface equal. The speech processing delay is an unavoidable condition of the speech interface and will exist in the game as well as the testing experiments. This would mean that the speech interface was not treated as well as the potential of perfect speech recognition.

4.5 Interface mode supremacy experiment:

In Sharon Oviatt’s paper, “10 Myths of Multimodal Interaction” [3], she says that the best interface for the user will automatically be adapted for use by the user. For example, some users using a program may use the menu at the top of the screen while other users adapt to use a keyboard shortcut such as holding down the control key and pressing another key. It would be possible to give the opportunity for the user to use all of the possible interfaces and find out which interface was finally preferred by the user. This experiment would be a brute-force method of finding which interface was preferred but it would be a little short of interesting comparisons of the various interfaces. There would also be less scope for examining little details in the results that would show a complete story about each interface.

4.6 Interface acceptability experiment:

In section 4.1, the amount of bot orders is seen to be an interesting metric. This could also be used to test the addictive behaviour of the user. To do this, the amount of orders given to a bot over a certain amount of time may be found. The amount of bot orders every minute could be examined for ten minutes. This would show the trend of use of the interface. If this drops over time, the user has lost interest in using the interface, and if this stays fairly level, the user has accepted the interface. An increase in the use could be a result of the users learning curve.

4.7 Results from an interface acceptability experiment:

The interface acceptability experiment was performed on a single user twice. In the first experiment, the user had very little knowledge of what the grammar was and what the user could say. In the second experiment, the user had been given a tutorial on the different things the user could say to the bots.

The orders given to the bots were classified into those accepted by the system and those rejected by the system. The user was not specifically trained for use with the speech recogniser, so this could affect the results quite a lot because the user has a higher sentence rejection rate. The results of the two experiments can be summarised in two graphs:

[image: image2.wmf]Interface use without full exposure to the grammar

0

2

4

6

8

10

12

14

1

2

3

4

5

6

7

8

9

10

failed

successful

Graph 1: The interface use before full exposure to the grammar.

[image: image3.wmf]Interface use after full exposure to the grammar

0

2

4

6

8

10

12

14

1

2

3

4

5

6

7

8

9

10

failed

successful

Graph 2: The interface use after full exposure to the grammar.

Total Attempts
Percentage successful:
Percentage failed:

Partial Exposure
78
48.7
51.3

Full Exposure
93
64.5
35.5

Table 3: Critical Statistics of the interface use before and after full exposure to the grammar.

Graphs 1 and 2 and Table 3 show differences of interface use between a user that doesn’t know the grammar and one that does. The two things which can be seen as a result of this experiment are that full exposure to the grammar is much better than minimal exposure since not only is the player’s confidence higher, as seen by a larger amount of attempts, but the failure rate is also lower.

It can be seen by looking at the graphs that in some minutes of the experiment, the user had met a difficulty in communicating with the bot since there is a larger failure rate. This happens in a larger amount in the case of the experiment with full exposure but this can be explained by the fact that in the first minute, the user was attempting to command all of the bots at once unsuccessfully and in the fourth minute, the user had met with a difficulty of the bot ‘Player 2’ not reacting to anything. Since these two problems were unavoidable during the experiment and did not occur during the first experiment, the user was told the cause of the problem and the solution during the experiment.

It can be seen in the graphs that the amount the user uses the interface fluctuates very rapidly. This is because the user’s reaction to the speech interface changes quite rapidly. It can also be seen that when the user has had a lot of commands failed the next minute is usually not as command intensive. Alternately, with a large amount of success in one minute, the successive minute has a lot of command attempts.

There were more effects that were possible to see during the experiments. When asked about the experiment, the user responded with some interesting comments. The user claimed that there were not enough commands, the bots were too slow to respond and react after a command, and the game was a little too intense.

The fact that there were not enough commands is always mentioned when considering almost any natural language game since natural language might as well be infinite if it were all to be processed, though in this case, it means that there should have been more Wizard of Oz experiments performed. It would be possible to merge the current bot with the Joystick control from the Wizard of Oz experiments. The ‘Wizard’ would be able to turn off the bot and perform additional tasks that the bot could not. This would enhance the Wizard of Oz experiments to work even after the usual testing phase.

The fact that the bots were too slow to react and respond is an issue related to the capabilities of the recogniser and the speech processing delay. It is interesting to note that since the game was so fast and the control system was so slow to respond, the user changed their mode of speech to suit the interface by speaking faster. The fact that the action was so intense also means that it might be better to slow the game down and lower the action content of the game while raising the strategic element. This result was also seen in the dissertation from two years ago by Steve Lackenby [1] and was one of the factors that influenced the design of this game. If this was a commercial game, it would be a good idea for the speed of the game to be influenced by the skill level or for the speed to be directly controlled by the user based on the users personal preference.

An unexpected result of the experiment was that the test user began showing symptoms of losing their voice after 20 minutes of testing. This is a problem since not only may the user’s enjoyment be reduced, but it also shows the possibility that an intense speech interface may cause medical problems. This is reason enough for future applications of speech based computer games to be less speech intensive.

Chapter 5: Evaluation and Discussion

This project has successfully shown how a speech based computer game may be made and how tests may be used to aid development, from design to testing.

Without the support of results from the experiments designed to evaluate speech based computer games it is not possible to say if the speech interface used in this game has solved the problems associated with bot control interfaces, however, through playing the game, it can be seen that the speech interface is a useful interface for bot control.

The fact that the game has been designed to need the speech interface has meant that the players are forced to use it while playing the game instead of using other methods. This has been shown by the interface acceptability experiment to have both good and bad points. The good being that the user is forced to adapt to the interface by the influences of enjoyment and the desire to win. The bad being that such adaptation may come at other costs such as lowered ability of the recogniser to recognise the speech because it is too fast, and the possible medical implications of speaking too much. The possible medical implications of speaking too much may be found from various sources of medical information such as doctors or it may be examined through experiments. The experiments would need to be voluntary however, and the user would need to know the possible risks.

One of the most difficult and important tasks with a project related to speech based computer games is to remember the speech interface. It is far too easy to make a design decision later on in the project that influences the speech interface. Such an example would be the way in which the enemy players were not given the ability to fight back in early Wizard of Oz experiments. The process of suddenly giving the enemy this ability later in the project has meant that the manner in which bots may work together to combat the strength of the enemy has not been fully examined. This could have led to the creation of the concept of squads as in the Quake 3 Arena [5] command line interface. The manner in which successive iterations of prototyping and wizard of Oz experiments are performed must be such that only small changes occur between each step. This is opposed to the method of making large changes between iterations which comes naturally. The desire to do this occurs because the developer has seen something interesting which opens up possibilities that the developer wants to create as soon as possible. Such a distraction occurred on this project when the tasks which the bots could do were considered. The bots were worked on and a lot of the internal functions of the game were changed to accommodate this work. This led to the problem of how the bots would go round corners being a focal issue for about a month. It was only when it was realised that the bot being stuck on a corner was a feature which was making the two sides more equal. Although this happens to both sets of bots, the player’s side may be ordered in such a way that overcomes this and exploits this in the enemy while the enemy side does not think that anything is wrong. It is also the case that the enemies seem to be more effective at rushing into a enclosed space and shooting everyone so this is why the two sides are more equal.

5.1 Relationships with other projects:

Examining the grammar for the Quake 3 Arena [5] command line interface, it may seem as if it would have been a good idea to copy the grammar to use in this game to avoid Wizard of Oz experiments. Examining the grammar in more detail it can be seen that the grammar is biased towards American players. This can be seen by the fact that commands such as “I quit being the leader” and “<botname> stop action” are quite unlikely constructs to be used in English sentences. This is one way of advocating the use of Wizard of Oz experiments in speech based computer games. One question which would be interesting would be to find out if the spoilers used to get the system grammar in Marc Cavazza’s project [12] were written by an American or an Englishman. Another factor which could change the effectiveness of a grammar is related to the accent that was used. In some languages, the accent does not change with what is said in that region, but in English, colloquialisms occur which are words and phrases which are only used in a certain region, and that only have those meanings in a set region. This could be bad for speech based computer games because the meaning needs to be set and cannot be ambiguous since it is hard to create programs to deal with ambiguity.
This project compares quite well with Steve Lackenby’s [1] dissertation since it has shown similar facts such as the excitement factor, and the speech processing delay. Where this project builds on that dissertation is that the amount of high reaction games not very compatible with the speech interface has increased, but the definition of high reaction is a changeable concept. It is this manner in which this game may be possibly slowed down to use more strategy aspects than high speed action aspects of the game. In this way, a high reaction game becomes a normal reaction game. This is similar to the player speeding up to suit the interface in the interface acceptability experiment.

This project proves some similar issues as were discovered by examining “Hey, you, Pikachu!” [10]. The player’s enjoyment was seen to drop in the interface acceptability experiment due to the response of the system being unsatisfactory. A similar thing was seen in the Pikachu game and the prediction from this that the user would reduce the use of the interface and try other means is proved by the experiment.

The Situated AI project by Marc Cavazza [12] which was discussed earlier is more interesting after creating the game and examining the pitfalls. The fact that the project focuses more on the AI and path planning rather than the speech interface may be because the intention is to make one part of the system better than the rest. The speech interface may have been considered complete by the people working on the project, so the prospect of this interface being updated and tested constantly with the rest of the system might not have been examined as much as it could have been. A better idea for creating speech controlled bots for both this project and the dissertation could have been to perform Wizard of Oz experiments to get the grammar, and then to get the artificial intelligence that has already been created and use that in the bot implementation. This would allow the project to focus more on the speech related parts of the project.

5.2 Possible improvements to this project:

There are many improvements that could be made to this project. Some are related to the speech recognition side of the project while others are related to the bot and others still are related to the game which was created.

The speech interface is the most important part of the project which could be changed. For example, the speech processing delay is currently too large for the current task. To solve this, the speed of the game could be reduced to make the game accept the consequences of such a delay. Another method which could be considered could be having the kill command as the bots default behaviour, and having the player control the bots to do other things. This would reduce the amount of commands given to the bots since the ‘kill’ command is used the most.

The grammar recognition method is also quite weak when compared to the expressive power of natural language. To solve this, it was be interesting to implement a dictation recogniser which uses statistical key word detection. Such a recogniser looking for the key word ‘find’ would be able to detect the word quite easily. The words around the key word could then be searched to get any other information that is required to carry out that command. The power of this method is that a command with the word ‘find’ in it is very likely to be about finding something or someone. If searching the words around the key word was not successful, it would be easy for the system to ask the player “Find who?” or “Find what?”. A brief conversation could take place such as User: “Player 1, Find.”, Player 1: “Find what?”, User: “A player?”, Player 1: “Find who?”, User: “Player 2.” Player 1: “Ok.”.

Another way of getting around the problem that there are many ways to say the same thing could involve creating a program that can rewrite sentences in many ways to make them mean the same thing. This program would be like a thesaurus for sentences. The grammar could then be processed and the various sentences could be added to the grammar with a tag that shows they all mean the same thing.

The bots may be improved so that they may have path following abilities as in Marc Cavazza’s project [12]. This would mean they would be able to comprehend “Kill Player 2 then Player 3 then Player 4.”, if the Wizard of Oz experiment claimed they needed to. Other improvements to the bots include the advanced system for moving around corners as mentioned earlier which only involves the player deciding if it can move to the player by if it can move to the player rather than deciding if it can move to a player by considering whether they can see it or not.

Having bots which attempt to give orders to the user would be an interesting direction for this project to take although this has already been implemented in Quake 3 Arena [5]. As a further direction, however, there could be a power struggle type of situation where one of the bots wants to give orders, gets told off by the user, and attempts a mutiny with a couple of other bots from the player’s team.

A more advanced behaviour that could be added to the bots is that the AI could be made to have simple emotions, and the characters could actually be able to panic in the middle of a battle, with lots of friendly fire hurting your own team, and then it would be the user’s task to reassure this character and calm it down using dialogue. In a similar way, speech could be used to infuriate the enemy AI, and to make them either too confident or panicked. To make things more interesting, the AI characters could be made to talk to and understand and bait each other, adding an extra dimension to the game. Dealing with detecting and imitating emotions in computer systems is an interesting field known as Affective Computing [22].

There are many features which could enhance the game world that the bots are in. The first would be to make the world larger so a lot more may happen in it and a lot more bots can exist and fight in it. This would give the user more variety than the small arena which exists at the moment. A feature which could be used in additional research would be to add more interesting objects into the arena and to see how these are referred to by the players. This complements the research that the first Wizard of Oz experiments discovered about distinguishable objects such as a blue wall and a yellow wall. It was identified that because of their ability as a reference, and the player is able to order a bot to “go to blue wall” as a result. The more complex and interesting the objects in the arena are, the more complex and interesting the commands are to interact with these objects. A banana in a game world may be eaten, thrown, dropped, placed on a table, and used in many more ways. This requires the grammar to match the interaction of the banana with the user and the game world and become more advanced.

The next improvement that could be made to the game would be for bots to be able to understand pointing when said with ‘that’ or ‘over there’ as a reference to an object or some aspect of the environment. This is similar to the method of multimodality shown in Sharon Oviatt’s paper “10 myths of multimodal systems” [3]. Such a system creates more problems than it solves because the definition of ‘over there’ in the phrase ‘go over there’ does not include any information related to how far ‘over there’ the user requires the player to go. This may be implemented in such that the bot will position itself at a reasonable distance away from the user in the direction given. The user would then be able to change the desired range by asking the player to ‘come closer’ or ‘move further back’.

The final and most important improvement that may be made to this project is that more tests need to be carried out as outlined in section 3. These tests would prove the worth of the speech interface when compared against other interfaces and would also test the system thoroughly.

5.3 Advanced projects:

The advanced projects are those that it would be interesting to research because of the results that may be discovered.

As noted in section 2.7, the command line interface is powerful but is not used very much because it compromises the safety of the player because the player is unable to fight back in that mode. If a speech interface was used to input the appropriate commands, this would allow the player to defend themselves at the same time as command input. This project would advocate the multimodal use of speech in a high reaction environment, but the resource drain of the speech recogniser added with the resource drain of such a demanding game would be problematic.

As mentioned in section 2.5, adding speech interaction to the game Half-Life [9] and giving the bots more realistic features would create a game which allows the user to interact on more levels than previously. The level of speech input might be quite basic and controlled by a statistical key word recogniser. Only adding phrases like “Hello, Barney.” and “I need some help with the <x>.” would increase the lifelike realism of the game. To go a step further, similar procedures used in this project to control a group of bots could be used in Half-Life to control a small group of Special Forces characters. In this case, it would be like controlling a group of human players since the bots already have basic human attributes such as sampled speech and intelligent problem solving and planning abilities.

It would be interesting if a project was undertaken to examine how many different speech samples it requires before the player is assumed to be human. This project would investigate the amount of real objects that may be used interchangeably to simulate objects with random fluctuations in real life, which would be useful for creating realistic computer games that immerse the player in a ‘real’ world.

Chapter 6: Conclusions

From investigating what speech is, and what it is commonly used for, it has been proved possible to create a game that matches the interface in the case of a speech based computer game where you can command bots using speech.

The bot in the game has been implemented to be asked information and given orders to interact in a certain way with the game world and it’s contents. These orders can then be carried out in the game world by the bot.

This dissertation has shown that realism in computer games plays a part when it comes to an immersive world that may be interacted with on many levels and that bots have to match human player characteristics such as speed and response in order to be presumed human.

Various experiments have been created to support the development and testing of the system and have proved that the user responds to changes and characteristics of the interface.

The project has been discussed and compared with various sources and it has been shown how improvements may be made to this project as well as what other projects may want to examine as a result of this project.

This dissertation has also considered what properties make up a speech interface such as the speech recogniser and the rest of the interface. This has led to various possible speech interfaces being created.

There is an example discourse from a Wizard of Oz experiment in the appendix as well as the current grammar.

References:

[1]: Steve Lackenby. (1998) Speech and Computer Games A Dissertation for the Department of Computer Science, Sheffield, England.

[2]: Mark Wrangham. (1999) Speech and Computer Games A Dissertation for the Department of Computer Science, Sheffield, England.

[3]: Sharon Oviatt. 10 myths of multi-modal interaction. A paper appearing in Communications of the ACM, Vol. 42, No. 11, November, 1999, pp. 74-81/

[4]: Sun Microsystems. (1997-8) Java Speech API Programmers Guide. http://java.sun.com
[5]: ID Software (1999) Quake 3 Arena A PC game published by Activision.

[6]: IBM (1999) ViaVoice Millennium A Speech Recogniser published by IBM.

[7]: Nintendo (1997) The Legend of Zelda A N64 game published by Nintendo.

[8]: Xatrix (1998) Kingpin – Life of Crime A PC game.

[9]: Valve Software (1997) Half-Life A PC game published by Sierra.

[10]: Nintendo (1999) Hey, you, Pikachu! / Pikachu Genki Dechu

A N64 game published by Nintendo.

Resources used:

Adam Einhorn (1999) Pikachu Genki Dechu FAQ Version .3 http://www.gamefaqs.com
Official site:

http://www.heyyoupikachu.com
[11]: Vivarium (2000) Seaman A Dreamcast game published by Sega.

 Useful Resources:

Tim Tilley (2000) The complete guide to Sega Dreamcast's Seaman Available at:

http://www.gamingplanet.com/console/dreamcast/cheats/walkthoughs/seaman_a.txt
[12]: Marc Cavazza, Srikanth Bandi and Ian Palmer (1998) ”Situated AI” in Video Games: Integrating NLP, Path Planning and 3D Animation.
[13]: University of Edinburgh (1999) Wizard of Oz Simulations Available at: http://www.ccir.ed.ac.uk/centre/woz.html
[14]: Satoshi Konno Joystick Interface for Java Available to download from the internet at: http://www.cyber.koganei.tokyo.jp/top/index.html
[15]: LucasArts Monkey Island published by LucasArts.

[16]: Sierra Space Quest published by Sierra.

[17]: Westwood Studios (1997) Blade Runner published by Westwood.

[18] SquareSoft (1998) Final Fantasy 7
[19] Radiohead Fitter, Happier. From the album Ok, Computer. By Radiohead.

[20] A. Turing The Turing Test

[21] L. Frank Baum The Wonderful Wizard of Oz
[22] Rosalind W. Picard (1997) Affective Computing (ISBN 0-262-16170-2)
Appendices:

An example dialogue for the Wizard of Oz experiment:

<user is told to interact with his super intelligent ‘personal assistant’>

User: Do I call him player B?

<user is told to call it whatever he likes>

User: I don’t know, B might be simpler..

User: So.. B..

Wizard: Yes.

User: Ah! He answered!

User: Um, B. Move to gray wall.

<wizard moves>

<user laughs>

User: Stop.

Wizard: Absolutely.

User: Um, player D is at 2 o’clock.

User: Shoot player D.

Wizard: Ok.

User: yay!

<Player D gets shot>

<Player D hides from player B>

User: Shoot player D.

<user laughs>

<Player D gets shot by user and Player B>

<Player B gets shot by user>

User: Oops.

User: Move to gray wall.

Wizard: I’m not smart enough. (Accidental button press)

<user confusion>

<Player B moves to gray wall>

User: Follow me.

<player B follows user>

User: Fantastic!

User: Move faster.

Wizard: I don’t get it.

User: Walk faster.

Wizard: What are you saying?

User: March.

<user clicks with disapproval>

Wizard: What?

<user has decided to confuse the wizard again>

User: Porn?

<The input of this symbol is valid, but would not be in the grammar, so the best response was to get the user to say something else.>

Wizard: I don’t understand.

<user is bored>

<wizard hasn’t been told anything to do for a while and gets impatient.>

Wizard: Yes?

User: Move to pink wall no purple wall.

User: Go to purple wall.

<wizard on its way>

User: Player G at two o’clock.

Wizard: Absolutely. (after unnatural pause.)

<user sighs, showing disappointment>

User: Face me.

<User has lost the plot, unknown to the wizard>

Wizard: Absolutely.

User: So I can kill you!

<Wizard doesn’t stand a chance>

Wizard: I’m not smart enough.

User: Obviously not, you’re dead.

<user laughs evilly>

The final grammar of the System:

grammar javax.speech.demo;

public <command> = (computer end program | stop program) {bye} |

<order> [<urgency>]|

<order> [<urgency>] <name> {orderedto} |

<name> {orderedto} <order> [<urgency>]|

<name> {orderedto} <query>|

<query> <name> {orderedto} |

(yes | positive | absolutely) {yes}|

(no | don't | no way) {no};

<query> = what are you doing {qdoing} |

where are you going {qgoing} |

who are you (chasing | seeking | finding | killing | locating) {qchasing} |

where are you {qwhere} |

how am I {qhowami} |

how are you {qhow} |

what is the score {qscore} |

how much health do you have {qhealth};

<order> = (hunt | locate | chase | find | follow) {locate} <name> |

(avoid | run away from) {avoid} <name> |

run {avoid} away {0} |

check {check} my <clock> |

patrol {patrol}|

(attack | kill | shoot) {attack} <name> |

((enemy | bandit) {0} | <name>) [is] at {at} <clock> |

run away {avoid} [from <name>] |

avoid {avoid} [<name>] |

(help | assist | protect) {help} <name> |

go [to] {go} <object> |

come {go} here {here} |

sing for me {sing} |

(stop | don't do that | wait) {stop} |

(continue | proceed | carry on) {proceed};

<urgency> = immediately | straight away | [right] now;

<object> = <wallName> wall | there {there};

<wallName> = blue {5} |

((light | pale) blue | cyan) {6} |

[light] grey {7} |

green {8} |

(magenta | purple) {9} |

(orange | yellow) {10} |

pink {11} |

red {12} |

north {1}|

south {3}|

west {2}|

east {4};

<name> = (me | <playernames1> | [player] 1) {1} |

(<playernames2>| [player] 2) {2} |

(<playernames3> | [player] 3) {3} |

(<playernames4> | [player] 4) {4} |

(<playernames5> | [player] 5) {5} |

(<playernames6> | [player] 6) {6};

<playernames1> = steve;

<playernames2> = andy;

<playernames3> = dunk;

<playernames4> = bob;

<playernames5> = bill;

<playernames6> = der;

<clock> = (1 {1}| 2 {2}| 3 {3}| 4 {4}| 5 {5}| 6 {6}| 7 {7}| 8 {8}| 9 {9}| 10 {10}| 11 {11}| 12 {12}) [o clock];

III

_1050262258.xls
Chart1

		4		4

		7		3

		6		3

		3		6

		3		3

		1		2

		6		4

		4		6

		2		4

		2		5

successful

failed

Interface use without full exposure to the grammar

Sheet1

		Test 1

		minute		successful		failed

		1		4		4

		2		7		3

		3		6		3

		4		3		6

		5		3		3

		6		1		2

		7		6		4

		8		4		6

		9		2		4

		10		2		5

		Test 2

		minute		successful		failed

		1		7		7

		2		4		1

		3		8		2

		4		4		8

		5		7		2

		6		5		1

		7		6		3

		8		8		2

		9		4		3

		10		7		4

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

successful

failed

Interface use after full exposure to the grammar

Sheet2

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

successful

failed

Interface use without full exposure to the grammar

Sheet3

		

		

_1050262207.xls
Chart4

		7		7

		4		1

		8		2

		4		8

		7		2

		5		1

		6		3

		8		2

		4		3

		7		4

successful

failed

Interface use after full exposure to the grammar

Sheet1

		Test 1

		minute		successful		failed

		1		4		4

		2		7		3

		3		6		3

		4		3		6

		5		3		3

		6		1		2

		7		6		4

		8		4		6

		9		2		4

		10		2		5

		Test 2

		minute		successful		failed

		1		7		7

		2		4		1

		3		8		2

		4		4		8

		5		7		2

		6		5		1

		7		6		3

		8		8		2

		9		4		3

		10		7		4

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

successful

failed

Interface use after full exposure to the grammar

Sheet2

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

successful

failed

Interface use without full exposure to the grammar

Sheet3

		

		

